Loading
Logo
Wishlist Share
Share Course
Page Link
Share On Social Media

Data Science

πŸ“Š Data Science Course

Β 

  • πŸ•’ Duration: 3 to 6 Months
  • πŸ“ Mode: Online & Offline
  • 🎯 Level: Beginner to Advanced
  • πŸ“œ Certification: Yes



🎯 Course Overview

Yeh course data science ki fundamental aur advanced skills par focus karta hai. Isme aapko data analysis, machine learning, data visualization, aur statistical modeling sikhne ko milengi. Yeh course aapko data-driven decision making ke liye tayar karega.



πŸ‘¨β€πŸŽ“ Who Should Join?
  • βœ” Beginners jo data science seekhna chahte hain.
  • βœ” Professionals jo data-driven insights chahte hain.
  • βœ” Analysts jo apni skills improve karna chahte hain.



πŸ“š Course Modules

Β 

πŸ”Ή Module 1: Introduction to Data Science
  • βœ… Data Science Basics (Definition, Importance, Applications).
  • βœ… Overview of Data Science Process.
  • βœ… Tools and Technologies Used in Data Science.
  • πŸ–Ό Example: Setting up your data science environment.



πŸ”Ή Module 2: Data Collection and Preprocessing
  • βœ… Data Collection Methods (Surveys, APIs, Web Scraping).
  • βœ… Data Cleaning Techniques (Handling Missing Values, Outliers).
  • βœ… Data Transformation and Feature Engineering.
  • πŸ–Ό Example: Cleaning a dataset using Python.



πŸ”Ή Module 3: Exploratory Data Analysis (EDA)
  • βœ… Importance of EDA in Data Science.
  • βœ… Data Visualization Techniques (Matplotlib, Seaborn).
  • βœ… Identifying Patterns and Trends in Data.
  • πŸ–Ό Example: Creating visualizations for data insights.



πŸ”Ή Module 4: Statistical Analysis
  • βœ… Descriptive Statistics (Mean, Median, Mode).
  • βœ… Inferential Statistics (Hypothesis Testing, Confidence Intervals).
  • βœ… Correlation and Regression Analysis.
  • πŸ–Ό Example: Performing regression analysis on a dataset.



πŸ”Ή Module 5: Machine Learning Fundamentals
  • βœ… Introduction to Machine Learning (Supervised, Unsupervised).
  • βœ… Key Algorithms (Linear Regression, Decision Trees, Clustering).
  • βœ… Model Evaluation Techniques (Cross-Validation, Confusion Matrix).
  • πŸ–Ό Example: Building a simple machine learning model.



πŸ”Ή Module 6: Advanced Machine Learning Techniques
  • βœ… Ensemble Methods (Random Forest, Gradient Boosting).
  • βœ… Neural Networks and Deep Learning Basics.
  • βœ… Natural Language Processing (NLP) Introduction.
  • πŸ–Ό Example: Implementing a neural network.



πŸ”Ή Module 7: Hands-on Projects
  • πŸ“Œ Analyzing Sales Data for Insights.
  • πŸ“Œ Building a Predictive Model for Customer Churn.
  • πŸ“Œ Creating a Recommendation System.
  • πŸ“Œ Conducting a Capstone Project.



πŸ’‘ Why Choose This Course?
  • βœ… 100% Practical Learning with Real-World Projects.
  • βœ… Expert-Led Training & Mentorship.
  • βœ… Data Science Certification upon Completion.
  • βœ… Career Guidance & Job Assistance.
  • βœ… Industry-Standard Best Practices.



πŸš€ Enroll Now & Start Your Data Science Journey!

Β 

  • πŸ“ž Contact: 9660571413, 8740932539
  • πŸ“ Branch 1: Kanta Choraha, Jhotwara, Jaipur
  • πŸ“ Branch 2: Sirsi Road, Panchyawala, Jaipur
  • 🌐 Website: tmscomputerclasses.com
Show More